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Abstract— Exponentially growing routing tables create the need for
increasingly storage-efficient lookup schemes that do not compromise
on lookup performance and update rates. This paper evaluates the
mechanisms that determine the storage efficiency of state-of-the-art IP
lookup schemes. A novel scheme named BARTS (Balanced Routing Table
Search) is proposed for searching large routing tables in wide embedded
memory at OC-192 and OC-768 speeds, while also supporting fast incre-
mental updates. BARTS supports a 38K-entry routing table in 255 KB
and a 72K-entry table in 453 KB; a 500K-entry table is estimated to fit
into 3 MB. More sophisticated memory management can further reduce
these figures to 215, 375 KB, and approx. 2.5 MB, respectively. This is
sufficient to handle the large routing tables towards which the Internet
seems to be heading in the near future.

I. I NTRODUCTION

The Internet is on the verge of facing a crisis. Its tremen-
dous popularity causes Border Gateway Protocol (BGP) rout-
ing tables to grow exponentially, creating serious problems for
router manufacturers. Classless Inter-Domain Routing (CIDR)
[1], deployed in 1994, brought some relief as it achieved al-
most linear table growth for several years, as reflected in the
Telstra BGP table [2]. However, since 1999, the exponential
growth seems to be back at full strength. The largest rout-
ing tables today contain about 100K entries. If the current
growth continues, routing tables with 500K entries might show
up within only a few years.

The problem becomes even more serious because the in-
crease in link speeds driven by advances in optical technology
will soon prevent application of SDRAM technology (with its
large storage capacity but limited bandwidth) for routing-table
lookups. Instead, faster memory technologies have to be used
such as SRAM, embedded DRAM, or ternary CAM (TCAM),
which are substantially more expensive and provide signifi-
cantly less storage capacity than SDRAM technology does.

This paper presents a novel IP lookup scheme for search-
ing large routing tables in embedded memory. The Balanced
Routing Table Search (BARTS) scheme exploits the wide data
buses available in this technology to achieve improved storage
efficiency over conventional lookup methods, in combination
with wire-speed lookup performance and high update rates.

II. CONVENTIONAL LOOKUP SCHEMES

This section focuses on the mechanisms that affect the stor-
age efficiency of state-of-the-art lookup schemes. The actual
performance of these schemes will be discussed in Section V.

IP lookup schemes based on TCAM technology store each
routing-table entry in a separate memory location and com-
pare the IP destination address in parallel with all entries [3].
The storage requirements for these schemes grow linear with
the routing table size. In contrast, SRAM- and DRAM-based

schemes typically process smaller segments of the IP destina-
tion address in multiple successive steps. Fig. 1(a) illustrates
such a processing step for a tree in which the branching from
a parent node� to one of � child nodes�������	�
��� � ����
 is deter-
mined by a so-calledbranch function that takes the marked
segment of the search key as operand. Fig. 1(b) shows a com-
mon technique to store all child nodes of one parent node in a
table, which removes the need to store a separate pointer for
each child node. The branch function������� provides the offset
of the child node within the table.

Popular branch functions areindexing (e.g., [4]–[7]) and
testing (e.g., [8],[9]). Indexing takes the segment value di-
rectly as offset. With address segments that correspond to
more densely populated parts of the routing table, this is more
storage efficient, as it results in better filled tables. With test-
ing, the offset is determined by comparing the address segment
against one or multiple test values. Testing is thus more storage
efficient for address segments that correspond to more sparsely
populated parts of the routing table, as fewer test values have to
be stored. Some indexing-based schemes apply a variable ad-
dress partitioning to obtain segments that correspond to more
densely populated parts of the routing table, improving storage
efficiency at the cost of a more complex update function.

A different type of “branch function” based on a very ef-
ficient encoding of a prefix tree is employed by the Lulea
scheme [10], which achieves the highest compression in state-
of-the-art lookup schemes, see Section V. Other but less
storage-efficient branch functions are used by [11]–[13].

Fig. 2 shows an example of an indexing-based data struc-
ture that is obtained by applying prefix expansion [4] on the
sample routing table I, for a partitioning of the IP destination
address into three segments of 16, 8, and 8 bits. Fig. 2 re-
veals two other important issues that affect the storage effi-
ciency of a lookup scheme. The first involves the storage and
processing of common parts of multiple routing-table entries
at one location. Five of the entries in Table I share a common
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Fig. 1. Branch function.
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Fig. 2. Longest matching prefix search using indexing.

TABLE I

SAMPLE ROUTING TABLE.

prefix length result prefix length result
123444h 24 P 1234Eh 20 S
123456h 24 Q 1234EFh 24 T
12345678h 32 R ABCDh 16 U

prefix 1234h, which only uses one table entry in Fig. 2. This
mechanism can significantly improve the storage efficiency for
large routing tables. TCAM-based schemes, which store each
routing-table entry separately, are examples of schemes that
do not exploit this mechanism. The second issue deals with
so-callednested prefixes. Prefix 123456h is a nested prefix of
prefix 12345678h, which results in a table entry (at offset 56h
in the middle table in Fig. 2) containing both a search result
and a pointer. This entry can become rather wide for large
routing tables, resulting in inefficient storage usage for table
entries that only need to store one of the two fields. Leaf push-
ing [4] can overcome this problem by moving the next-hop in-
formation Q into the empty entries in the table indexed by the
third IP address segment. However, this reduces update perfor-
mance as a larger number of table entries need modification in
the case of an update.

Another important issue is memory management. Data
structures composed of variable-sized buffers can suffer from
memory fragmentation, which can significantly reduce the ac-
tual number of routing-table entries that can be stored in a
given memory [14]. Memory fragmentation can be reduced
by limiting the number of buffer sizes and by defragmentation.

Improving storage efficiency will typically degrade update
performance. Lookup performance is not affected if the vari-
ous levels in the data structure are stored in separate memory
banks (as shown in Fig. 2) and if pipelining is used to obtain a
lookup rate that only depends on the memory cycle time. Wire-
speed lookup performance for OC-192 and OC-768 requires
cycle times of at most 26 and 10 ns, respectively, which are

feasible with state-of-the-art embedded memory technologies.
Branch functions that are able to efficiently process larger IP
address segments have the advantage that fewer memory banks
are needed. This typically results in a more efficient use of
each bank as it is shared by a larger part of the data structure.

III. B ALANCED ROUTING-TABLE SEARCH (BARTS)

A. Table Compression

The BARTS scheme is based on a special type of hash func-
tion. The hash index consists of a subset of the search key bits
that are selected such that the maximum number of collisions
for any hash index is limited to a configurable boundì that is
a power of 2 and equals at least 2. A collision occurs if two pre-
fixes mapped on the same hash index can both be the longest
matching prefix of the search key. Collisions for a given hash
index are then resolved by at mostì parallel comparisons.
Note that the termscompressed index and compressed table
will be used instead of hash index and hash table.

The concept of the compression will now be explained using
an example involving the table indexed by the second IP ad-
dress segment in Fig. 2 for a selected collision boundìîíðï .
This table implements a local prefix search on the prefixes
shown in Table II. The compression resolves the problem dis-
cussed in Section II regarding a nested prefix with both next-
hop information and a pointer by acting as if there are two pre-
fixes, one associated with the next hop information, the other
with the pointer. This is the case for prefix 56h in Table II. The
corresponding list of prefixes in binary notation now becomes:

0100 0100b (44h)
0101 0110b (56h - next hop Q)
0101 0110b (56h - pointer)
1110 xxx xb (Eh)
1110 1111b (EFh)

(prefix Eh is padded withx’s to match the IP address segment
size, wherex means “don’t care”). The two underlined bit po-
sitions are an example of a compressed index, for which the
maximum number of prefix collisions is limited toìîíñï
(Section III-B will discuss how these bit positions can be de-
termined). Fig. 3 shows the corresponding compressed table.
The prefixes that are mapped on a certain compressed-index
value are included in the corresponding compressed table en-
try as tuples consisting of a test value, a test mask and a search
result. The set bits in the test mask indicate which bit positions
are covered by the prefix. Note that prefix Eh is mapped on
multiple compressed-index values.

A compressed table entry will be called ablock, and param-
eter ì will be called the block size. A tuple containing next-
hop information will be denoted as a next-hop entry, and a tu-
ple containing a pointer will be called a pointer entry. The
bits of the IP address segment that form the compressed index
can be specified by a so-calledindex mask that is stored to-
gether with the pointer to the compressed table as is shown in
Fig. 3. The index mask specifies the hash function that is used
to compress the table. The actual entry formats will be defined
in Section III-C.
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TABLE II

LOCAL PREFIXES.

prefix length result
44h 8 P
56h 8 Q, ptr
Eh 4 S
EFh 8 T
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Fig. 3. Compressed table for����� .
The memory width allows an entire block to be read in

one access. Parallel test logic will then determine the longest
matching next-hop entry (i.e., the matching next-hop entry
with the most set bits in the test mask) as well as the longest
matching pointer entry. The test logic can be simplified as
there can be only one matching pointer entry because pointer
entries involve an exact match over the entire IP address seg-
ment. A further simplification of the parallel test logic can be
realized by ordering the next-hop entries by their prefix length.

B. Compressed-Index Calculation

This section presents a hardware-based compressed-index
“calculation” for optimum compression of a table involving
� prefixes in exactly� cycles. A similar calculation can be
implemented in software, but will perform slower.

An optimum compressed index will be calculated by a
“brute-force” count of the actual number of collisions that oc-
cur for each possible value of each possible compressed index.
The smallest compressed index for which the number of col-
lisions for all values is bounded byì is then selected as the
optimum compressed index. This requires a counter array that
includes one counter for every possible combination of a com-
pressed index and a compressed-index value. The total number
of counters can be derived as follows. A total of�5�
�� different
compressed indices consisting of� bits can be extracted from
an IP address segment with� bits, each of which can haveï 

different values. It can be shown that a compressed index can
consist of a maximum of����� �M���¨ì �¡ �¢ bits for a block size
ì (derivation omitted owing to space limitations). This results
in a total number of counters equal to£ í �T¤D¥ ¦T§P¨ ©«ª.¬ �­
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A counter needs to be able to count fromµ to ì� ¶¢ for a block
size ì , where the maximum counter value corresponds to a

TABLE III

NUMBER OF COUNTERS AS A FUNCTION OF·&�¹¸�ºT» .
counter total number of counters� “size” º¼�¾½ º¼�¾¿ º¡�¾À º¼�ÂÁ º¼�¾Ã

2 2 bits 81 243 729 2187 6561
4 3 bits 65 211 665 2059 6305
8 4 bits 33 131 473 1611 5281
16 5 bits 9 51 233 939 3489
32 6 bits - 11 73 379 1697

counter overflow. This counter can be realized by a register
with � �M���¨ì �« Ä¢ bits. Table III shows the required counter
“size” and number of counters as a function of block sizeì
and IP address segment size� .

All counters are connected by combinatorial logic to a com-
mon bus on which the prefixes are written as test values
and test masks in successive cycles. The combinatorial logic
causes the counter to increase by one if the prefix maps on the
compressed-index value corresponding to that counter. If the
counter value exceeds the block size, an overflow flag is raised.
Arbitration logic will determine the smallest compressed index
for which none of the corresponding counters has experienced
an overflow. Fig. 4 shows the counter and corresponding com-
binatorial logic for a compressed index specified by an index
mask01100100b and with value101b .

The index-mask calculation can be further optimized by fil-
tering out nested prefixes that can never be the longest match-
ing prefix for a given compressed-index value (this will not be
discussed further in this paper).
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Fig. 4. Combinatorial logic and counter for index mask01100100b and

compressed-index value101b .

C. Data Structure

Fig. 5 shows the entries used to build the actual data struc-
ture. The various entry types are distinguished by the first two
bits. Entry type00 is an empty entry. Entry type01 is a next-
hop entry containing a test value, a test mask, and next-hop
information as discussed in Section III-A. Entry type10 is a
pointer entry. As this type of entry involves an exact match
over the entire IP address segment, no test mask is needed.
Instead, an index mask is included, defining the compressed
index used to index the compressed table that is referenced.

Entry type11 is a special pointer entry involving an index
mask equal to zero for referring to compressed tables consist-
ing of at mostì prefixes that are stored within a single block.
To efficiently handle small tables containing fewer thanì pre-
fixes, multiple tables can be stored in the same block. The
entries of each compressed table are identified by an entry-
selection field, which is stored with the pointer instead of the
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Fig. 6. Entry selection field.

index mask. Entry selection can be based on an offset together
with a count, or on a bit vector in which each bit corresponds to
a location within the block. An example of the latter is shown
in Fig. 6 for compressing the table indexed by the third IP ad-
dress segment in Fig. 2. The entry-selection field and memory
management can be simplified by enforcing power-of-2 table
sizes through padding with empty entries (type00).

D. Incremental Updates and Memory Management

The data structure can be incrementally updated by creat-
ing modified copies of the corresponding compressed tables
in memory, and linking them by an atomic write operation
into the structure similar as described in [4]. Hardware-based
compressed-index calculation and compressed-table construc-
tion enable update rates in excess of hundreds of thousands per
second, as will be discussed elsewhere [15].

If power-of-2 table sizes are enforced (as described above),
then the memory manager has to support�D  ï buffer sizes cor-
responding to compressed tables withï ¯ �iï � ��� � �iï ��¬ � entries,
which matches very well with a buddy system [16]. Other-
wise, all buffer sizes corresponding to small compressed ta-
bles with fewer thanì entries have to be supported as well,
requiring more sophisticated memory management. If mem-
ory fragmentation were to become a problem, then the BARTS
scheme can be adapted to use fewer buffer sizes by either re-
ducing the segment size� , or by only using compressed indices
that correspond to supported buffer sizes. In the latter case, a
suboptimum compression will be achieved, but the implemen-
tation of the index-mask calculation as described in Section
III-B becomes simpler because fewer counters are needed.

IV. SIMULATIONS

Several simulations have been performed with the routing
tables listed in Table IV, which are made publicly available by
the IPMA project [17]. These simulations involved block sizes
betweenï and �¢ï in combination with the following partitions
of the IP address: 16 8 8, 16 4 4 8, 14 5 5 8, and 12 6 6 8 (the

notation 16 8 8 represents a partition involving three segments
of 16, 8, and 8 bits). The first segment of each partition in-
dexes an uncompressed table, the remaining segments “index”
compressed tables. All entries fit into 32 bits for the simulated
routing tables, while also including an 18-bit next-hop field.
Fig. 7 shows the effect of the address partition on the storage
requirements for a fixed block size of 8, which corresponds to a
memory width of 32 bytes. Fig. 8 shows the effect of the block
size (memory width) for a fixed partition 12 6 6 8. All simula-
tions involved power-of-2 buffer sizes, except two simulations
with partition 12 6 6 8 and block sizes 16 and 32, marked in
Fig. 8 as ‘N=16*’ and ‘N=32*’.

Partition 12 6 6 8 performs best of all simulated partitions. It
allows the 72K-entry paix table to fit into 492 KB forì í�� ,

TABLE IV

IPV4 ROUTING TABLES (FEBRUARY 2000).

routing table prefixes routing table prefixes
Aads 19056 Mae-east 54499
PacBell 27085 Paix 72825
Mae-west 36292
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into 463 KB for ì í ¢�� , and into 453 KB forì í��¢ï , using
power-of-2 buffer sizes. The same table fits into 419 KB for
ì í ¢�� and into 375 KB forì í��¢ï if non-power-of-2 buffer
sizes are supported. Storage efficiency improves not only for
larger block sizes, but also for larger routing tables. For exam-
ple, the average number of bytes needed to store one routing-
table entry decreases from 7.4 bytes for aads to 6.3 bytes for
paix for a partition 12 6 6 8 andì í��¢ï (power-of-2 buffer
sizes). This results from the increasing number of common
parts between routing-table entries, see Section II. A conser-
vative estimate, assuming the average storage per entry will
remain at 6.3 bytes for routing tables larger than paix, implies
that a 500K-entry routing table will fit into only 3 MB.

V. COMPARISON

Table V lists reported and estimated storage requirements of
several well-known lookup schemes for a popular 38K-entry
routing table (most of these are from [18]). It also gives esti-
mated storage requirements of BARTS for this table size, ob-
tained from the simulation results by interpolation.

BARTS achieves the second-best performance. Only the
Lulea scheme performs better as it needs only 160 KB with
an address partition of three segments. However, compared to
BARTS, the Lulea scheme has three major drawbacks: (1) It
needs up to four memory accesses to process a single IP ad-
dress segment. BARTS needs exactly one. (2) It seems un-
able to support fast incremental updates. Moreover, updating
a chunk (term used in [10]) always requires full recompres-
sion. BARTS supports fast incremental updates and performs
inserts directly if there are empty entries in a block (which is
likely for larger block sizes). (3) With the Lulea scheme, com-
pressed chunks can haveï���� different non-power-of-2 sizes
(mainly due to the varying number of pointers) for an address
segment of 8 bits. Incremental modifications of the data struc-
ture would require complex memory management, while the
large number of buffer sizes could lead to significant memory
fragmentation. BARTS achieves good performance with only�   ï power-of-2 buffer sizes for an address segment of� bits,
and can efficiently be adapted to use fewer buffer sizes.

BARTS outperforms the other lookup schemes, which are
mostly based on fixed “branch functions” involving indexing
or testing, thanks to itsadaptive compression: more bits are
used for indexing to compress densely populated tables effi-
ciently, but most bits are only involved in testing to compress
sparse tables. BARTS also outperforms lookup schemes based

TABLE V

STORAGE REQUIREMENTS(IN KB) FOR A 38K-ENTRY ROUTING TABLE.

Algorithm Storage Algorithm Storage
Patricia (BSD) 3262 BARTS (12 6 6 8, N=8) 269
Binary Search[11] 1600 BARTS (12 6 6 8, N=16) 259
6-way search[8] 950 BARTS (12 6 6 8, N=32) 255
LC Trie[6] 700 BARTS (12 6 6 8, N=16*) 231
Prefix Expansion[4] 450 BARTS (12 6 6 8, N=32*) 215
Lulea[10] 160

on ternary CAMs for large routing tables. BARTS uses an av-
erage of 6.3 bytes to store a single entry of the 72K-entry paix
table (partition 12 6 6 8,ì í��¢ï ). Removing the 18-bit next-
hop information from those 6.3 bytes leaves about 32 bits that
are effectively used to “store” and “search” the prefix part of
each routing-table entry. These 32 binary bits require less chip
area than the 32 associative ternary bits a ternary CAM uses to
“store” and “search” the prefix part of a routing table entry.

VI. CONCLUSIONS

BARTS is a novel IP lookup scheme that achieves wire-
speed lookup performance for OC-192 and beyond using
pipelining techniques, that efficiently handles large routing ta-
bles with more than 100 K entries in wide embedded memory
and supports fast incremental updates using a hardware-based
update function. This paper has focused primarily on the stor-
age requirements. Another paper [15] will analyze the update
performance and memory management issues in more detail.
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